Latente Wärme, Ausdehnung und Wärmeübertragung
Classified in Chemie
Written at on Deutsch with a size of 4,46 KB.
Latente Wärme des Zustandswechsels
Die latente Wärme des Zustandswechsels, L, ist die Menge an Wärmeenergie, die benötigt wird, um eine Masse von 1 kg einer reinen Substanz bei einem bestimmten Druck und einer bestimmten Temperatur zu übertragen, um ihren Zustand zu ändern: Q = m x L.
Wir können zwischen latenter Schmelzwärme und latenter Verdampfungswärme unterscheiden:
Latente Schmelzwärme
Im Falle des Schmelzens: Q = m x Lf
Hier ist Lf die latente Schmelzwärme, die der Erstarrungswärme entspricht. Der Unterschied besteht darin, dass wir beim Schmelzen dem Körper Energie zuführen, während wir beim Erstarren Energie in Form von Wärme an die Umgebung abgeben.
Latente Verdampfungswärme
Im Falle der Verdampfung: Q = m x Lv
Hier ist Lv die latente Verdampfungswärme, die der Kondensationswärme entspricht. Der Unterschied besteht darin, dass wir beim Verdampfen dem Körper Energie zuführen müssen, während wir beim Kondensieren Energie abgeben.
Analyse der Wärmeübertragung
- Abschnitt 1: Eis von T1 unter 0 °C bis 0 °C (fester Zustand). Die zu übertragende Wärmemenge, um die Temperatur des Eises von T1 (unter Null) auf 0 °C zu erhöhen, ist: Q1 = m × Ce × [0 - (-t1)]
- Abschnitt 2: Eis bei 0 °C wird zu flüssigem Wasser bei 0 °C. Hier findet eine Zustandsänderung statt, bei der die Temperatur konstant bleibt. Die zu übertragende Wärmemenge ist: Q2 = m · Lf
- Abschnitt 3: Flüssiges Wasser bei 0 °C wird zu flüssigem Wasser bei 100 °C. Die zu übertragende Wärmemenge, um die Temperatur des Wassers von 0 °C auf 100 °C zu erhöhen, ist: Q3 = m × Ce × (100 - 0)
- Abschnitt 4: Flüssiges Wasser bei 100 °C wird zu Wasserdampf bei 100 °C. Wieder einmal findet eine Zustandsänderung statt: Wasser geht von flüssigem Wasser bei 100 °C zu Wasserdampf bei 100 °C über. Die übertragene Wärmemenge ist: Q4 = m · Lv
Die gesamte übertragene Wärmeenergie ist: Qt = Q1 + Q2 + Q3 + Q4
Ausdehnung von Festkörpern
Lineare Ausdehnung
Die lineare Ausdehnung ist die Zunahme der Länge, die ein Körper erfährt, wenn er erhitzt wird: lt = lo (1 + α · t)
Dabei ist:
- lo = Länge des Körpers bei 0 °C
- t = Temperatur, auf die er erhitzt wird
- lt = resultierende Länge bei Temperatur t
- α = linearer Ausdehnungskoeffizient, der die Verlängerung darstellt, die ein Körper mit einer Längeneinheit bei 0 °C erfährt, wenn seine Temperatur um ein Grad erhöht wird.
Die Ausdehnung einer bestimmten Dimension ist proportional zur Ausgangslänge dieser Dimension.
Lineare und kubische Ausdehnungen sind auf die Zunahme der Temperatur des Körpers zurückzuführen.
Flächenausdehnung
Die Flächenausdehnung ist die Zunahme der Fläche, die ein Körper erfährt, wenn er erhitzt wird:
St = So (1 + β · t)
Dabei ist:
- So = Oberfläche des Körpers bei 0 °C
- St = resultierende Oberfläche bei Temperatur t
- β = Flächenausdehnungskoeffizient, der die Zunahme der Flächeneinheit bei 0 °C darstellt, die ein Körper erfährt, wenn seine Temperatur um ein Grad erhöht wird.
Kubische Ausdehnung
Die kubische Ausdehnung ist die Zunahme des Volumens, die ein Festkörper erfährt, wenn seine Temperatur erhöht wird:
Vt = Vo (1 + γ · t)
Dabei ist:
- Vo = Volumen des Körpers bei 0 °C
- Vt = resultierendes Volumen bei Temperatur t
- γ = kubischer Ausdehnungskoeffizient, der die Zunahme der Volumeneinheit bei 0 °C darstellt, die ein Körper erfährt, wenn seine Temperatur um ein Grad erhöht wird.
Der Ausdehnungskoeffizient (α, β, γ) ist für jede Substanz charakteristisch und wird in °C⁻¹ gemessen.
Ausdehnung von Flüssigkeiten
Die scheinbare Ausdehnung einer Flüssigkeit ist die tatsächliche Ausdehnung der Flüssigkeit abzüglich der Ausdehnung des Behälters, der sie enthält. (Zwischen 0 °C und 4 °C dehnt sich Wasser aus, anstatt sich zusammenzuziehen, und erreicht bei 4 °C ein minimales Volumen und eine maximale Dichte).
Ausdehnung von Gasen
Wenn die Temperatur eines Gases variiert, variiert sein Volumen, während der Druck konstant bleibt: V = Vo (1 + α · t), wobei α = 1/273 °C⁻¹ (Gay-Lussac-Gesetz).